由FRED光纤耦合效率计算得出的返回值是两个场分布之间的重叠部分,且没有考虑入射场的功率。因此要想知道多少功率耦合到该模式中一定要做到以下两步:
1.通过辐射照度的计算确定分析面处的功率值(P)
2.通过光纤耦合效率分析确定CE的值
耦合到光纤模式中的功率大小可以简单的表示为P * CEpower。
追迹完从具有2048×2048个样本点的光源发出的光线后,当我们计算辐射照度时,输出窗口里就会显示出到达光纤接口后面的分析面处的光源功率值。
图7. 分析面处的积分功率值
可以看出,26.55%的光功率到达了分析面。为了确定到光纤模式中的耦合,这里使用了FRED光纤耦合效率分析。注意到0.005mm的光纤纤芯半径在这里需要准确的输入。
图.8 光纤耦合效率分析对话框
点击完OK后,结果会显示在输出窗口中。
图9. 光纤耦合效率显示在输出窗口
可以看出,耦合效率为71.44%。因此,在这个系统总的耦合功率百分比为71.44%*26.55% = 19.0%。
ML725C8F激光二极管工作光源是在5mW,因此在该配置中,光纤传输的信号差点不到1mW。
对齐灵敏度
对于测定设计公差以及激光二极管/光纤包的可行性,理解光纤对齐灵敏度是非常有必要的。使用FRED脚本功能可以很容易的完成这件事。
与该FRED文件相关联的共有三个内置脚本:
纵向距离扫描
横向偏移扫描
倾斜扫描
这三个脚本之间是相似的:通过用户控制的步长,每个脚本调整了光纤的位置、计算了耦合系数并打印到输出窗口或者到Microsoft Excel电子表格中(如果有需要)。
纵向对齐灵敏度
在距离扫描脚本文本的顶端,用户输入光纤的开始和结束位置,以及希望运行的扫描分辨率(步长)。
如果用户希望FRED将数据打印到Microsoft Excel电子表格中并绘图,就要设置exportToExcel标签值为True。
就在这定义了光纤的参数,这只是用于光纤耦合效率的计算。
头部打印出来后,脚本的主循环就开始了。这是一个“for”循环,它会一步一步的改变光纤的位置-[1],追迹光线-[2],计算照度并确定总功率-[3],计算光纤耦合效率-[4],最后计算模式功率-[5]。
图10. 位置扫描脚本的主循环
注意到函数FiberCoupleStepIndex返回了两个值-“coupleReal” 和“coupleImag”,这些变量是耦合系数的实部和虚部。
下图表示的是,对于球透镜到光纤的距离从1.5mm到2.5mm变化的结果。
图11. 光纤耦合vs距离
激光二极管的制造商Mitsubishi指定了在距球透镜1.9mm位置处,光纤耦合功率的最大值为0.8mW(16%的效率),FRED在耦合中计算出了稍微偏大的值。这种差异可以解释为:耦合对光纤模式尺寸和折射率分布极为敏感。很遗憾的是,Mitsubishi没有给出使用光纤的具体细节。
横向准直灵敏度
“横向偏移扫描”脚本与之前十分相似,除了用户为扫描定义了如下的参数:
图12. 在Z=1.86mm位置处:光纤耦合vs横向偏移
方向灵敏度
该脚本同样与先前的脚本十分相似,这里用户定义了取向的角度范围。注意到该脚本只是在水平方向倾斜了光纤,并不是一个任意的角度。
图13. 在Z=1.86mm位置处:光纤耦合vs水平方向旋转
结束语
在本文中,FRED展现出了从激光二极管到光纤耦合准确计算的能力。其计算结果与激光二极管生产商提供的耦合信息一致。FRED的相干传输能力以及高散射相干的精确定义对于这种类型问题的仿真是很关键的。
本例系统数据(单位是mm)
|