以下是三个双目多线结构光的代码示例,分别使用不同的编程语言实现:
1. Python代码示例
- import cv2
- import numpy as np
- # 定义相机参数
- image_width = 640
- image_height = 480
- baseline = 50 # 单位:毫米
- focal_length = 500 # 单位:像素
- # 定义光栅参数
- num_lines = 16
- line_width = 10 # 单位:像素
- line_spacing = 20 # 单位:像素
- gray_code_length = 4
- # 生成Gray码
- def generate_gray_codes(length):
- gray_codes = []
- for i in range(2**length):
- gray_code = i ^ (i >> 1)
- gray_codes.append(bin(gray_code)[2:].zfill(length))
- return gray_codes
- # 生成光栅图案
- def generate_line_patterns(num_lines, line_width, line_spacing):
- patterns = []
- for i in range(num_lines):
- pattern = np.zeros((image_height, image_width), dtype=np.uint8)
- pattern[:,i*line_spacing:(i*line_spacing+line_width)] = 255
- patterns.append(pattern)
- return patterns
- # 生成投影点坐标
- def generate_projection_points(num_lines, image_width, image_height):
- points = np.zeros((num_lines, image_height, image_width, 3), dtype=np.float32)
- for i in range(num_lines):
- for j in range(image_height):
- for k in range(image_width):
- points[i,j,k,0] = k
- points[i,j,k,1] = j
- points[i,j,k,2] = i*line_spacing
- return points
- # 计算摄像机坐标系中的坐标
- def calculate_camera_coordinates(projection_points, baseline, focal_length):
- camera_points = np.zeros_like(projection_points)
- for i in range(projection_points.shape[0]):
- for j in range(projection_points.shape[1]):
- for k in range(projection_points.shape[2]):
- x = projection_points[i,j,k,0]
- y = projection_points[i,j,k,1]
- z = projection_points[i,j,k,2]
- camera_points[i,j,k,0] = (x - image_width/2) * z / focal_length
- camera_points[i,j,k,1] = (y - image_height/2) * z / focal_length
- camera_points[i,j,k,2] = z + baseline
- return camera_points
- # 投影图案并采集图像
- def project_and_capture_image(patterns, gray_codes, camera_points, z_near, z_far):
- num_patterns = len(patterns)
- image = np.zeros((image_height, image_width), dtype=np.float32)
- for i in range(num_patterns):
- pattern = patterns[i]
- gray_code = gray_codes[i]
- binary_code = np.array(list(gray_code), dtype=np.int) - 48
- binary_code[binary_code==0] = -1
- surface_normal = np.zeros((image_height, image_width, 3), dtype=np.float32)
- for j in range(binary_code.size):
- if binary_code[j] == 1:
- surface_normal[:,j,:] = camera_points[:,j,:] - np.array([0, 0, z_near])
- else:
- surface_normal[:,j,:] = np.array([0, 0, z_far]) - camera_points[:,j,:]
- surface_normal /= np.linalg.norm(surface_normal, axis=2)[..., np.newaxis]
- dot_product = np.sum(surface_normal * np.array([0, 0, -1]), axis=2)
- projected_image = pattern * dot_product
- image += projected_image
- image /= num_patterns
- return image
- # 计算深度图
- def calculate_depth_map(left_image, right_image, baseline, focal_length):
- depth_range = 1000 # 单位:毫米
- depth_map = np.zeros((image_height, image_width), dtype=np.float32)
- for y in range(image_height):
- for x in range(image_width):
- if left_image[y,x] == 0 or right_image[y,x] == 0:
- continue
- disparity = abs(x - (x - baseline*focal_length/right_image[y,x]))
- depth = (baseline * focal_length) / disparity
- depth_map[y,x] = depth if depth <= depth_range else 0
- return depth_map
- # 生成Gray码
- gray_codes = generate_gray_codes(gray_code_length)
- # 生成光栅图案
- patterns = generate_line_patterns(num_lines, line_width, line_spacing)
- # 生成投影点坐标
- projector_points = generate_projection_points(num_lines, image_width, image_height)
- # 计算摄像机坐标系中的坐标
- camera_points = calculate_camera_coordinates(projector_points, baseline, focal_length)
- # 投影并采集图像
- left_image = project_and_capture_image(patterns, gray_codes, camera_points[:,:,0], z_near, z_far)
- right_image = project_and_capture_image(patterns, gray_codes, camera_points[:,:,1], z_near, z_far)
- # 计算深度图
- depth_map = calculate_depth_map(left_image, right_image, baseline, focal_length)
- # 显示深度图
- cv2.imshow('Depth Map', depth_map / z_far * 255)
- cv2.waitKey(0)
复制代码
2. C++代码示例
- #include <iostream>
- #include <opencv2/opencv.hpp>
- using namespace std;
- using namespace cv;
- // 定义相机参数
- const int image_width = 640;
- const int image_height = 480;
- const float baseline = 50; // 单位:毫米
- const float focal_length = 500; // 单位:像素
- // 定义光栅参数
- const int num_lines = 16;
- const int line_width = 10; // 单位:像素
- const int line_spacing = 20; // 单位:像素
- const int gray_code_length = 4;
- // 生成Gray码
- vector<string> generate_gray_codes(int length)
- {
- vector<string> gray_codes;
- for (int i=0; i<pow(2,length); i++)
- {
- int gray_code = i ^ (i >> 1);
- string code_str = bitset<32>(gray_code).to_string().substr(32-length);
- gray_codes.push_back(code_str);
- }
- return gray_codes;
- }
- // 生成光栅图案
- vector<Mat> generate_line_patterns(int num_lines, int line_width, int line_spacing)
- {
- vector<Mat> patterns;
- for (int i=0; i<num_lines; i++)
- {
- Mat pattern = Mat::zeros(image_height, image_width, CV_8UC1);
- pattern.colRange(i*line_spacing, i*line_spacing+line_width).setTo(255);
- patterns.push_back(pattern);
- }
- return patterns;
- }
- // 生成投影点坐标
- Mat generate_projection_points(int num_lines, int image_width, int image_height)
- {
- Mat points = Mat::zeros(num_lines, image_height*image_width, CV_32FC3);
- for (int i=0; i<num_lines; i++)
- {
- for (int j=0; j<image_height; j++)
- {
- for (int k=0; k<image_width; k++)
- {
- float* ptr = points.ptr<float>(i,j*image_width+k);
- ptr[0] = k;
- ptr[1] = j;
- ptr[2] = i*line_spacing;
- }
- }
- }
- points = points.reshape(1, num_lines*image_height);
- return points;
- }
- // 计算摄像机坐标系中的坐标
- Mat calculate_camera_coordinates(Mat projection_points, float baseline, float focal_length)
- {
- Mat camera_points = Mat::zeros(projection_points.rows, projection_points.cols, CV_32FC3);
- for (int i=0; i<projection_points.rows; i++)
- {
- for (int j=0; j<projection_points.cols; j++)
- {
- float* proj_ptr = projection_points.ptr<float>(i,j);
- float* cam_ptr = camera_points.ptr<float>(i,j);
- float x = proj_ptr[0];
- float y = proj_ptr[1];
- float z = proj_ptr[2];
- cam_ptr[0] = (x - image_width/2) * z / focal_length;
- cam_ptr[1] = (y - image_height/2) * z / focal_length;
- cam_ptr[2] = z + baseline;
- }
- }
- return camera_points;
- }
- // 投影图案并采集图像
- Mat project_and_capture_image(vector<Mat> patterns, vector<string> gray_codes, Mat camera_points, float z_near, float z_far)
- {
- int num_patterns = patterns.size();
- Mat image = Mat::zeros(image_height, image_width, CV_32FC1);
- for (int i=0; i<num_patterns; i++)
- {
- Mat pattern = patterns[i];
- string gray_code = gray_codes[i];
- vector<int> binary_code;
- for (int j=0; j<gray_code.length(); j++)
- {
- binary_code.push_back(gray_code[j] - '0');
- }
- for (int j=0; j<binary_code.size(); j++)
- {
- if (binary_code[j] == 1)
- {
- Mat surface_normal = camera_points.clone().reshape(3, image_height);
- surface_normal.col(j) -= Vec3f(0, 0, z_near);
- normalize(surface_normal, surface_normal);
- Mat dot_product = surface_normal * Vec3f(0, 0, -1);
- Mat projected_image = pattern * dot_product.reshape(1, image_height);
- image += projected_image;
- }
- else
- {
- Mat surface_normal = camera_points.clone().reshape(3, image_height);
- surface_normal.col(j) -= Vec3f(0, 0, z_far);
- normalize(surface_normal, surface_normal);
- Mat dot_product = surface_normal * Vec3f(0, 0, -1);
- Mat projected_image = pattern * dot_product.reshape(1, image_height);
- image += projected_image;
- }
- }
- }
- image /= num_patterns;
- return image;
- }
- // 计算深度图
- Mat calculate_depth_map(Mat left_image, Mat right_image, float baseline, float focal_length)
- {
- float depth_range = 1000; // 单位:毫米
- Mat depth_map = Mat::zeros(image_height, image_width, CV_32FC1);
- for (int y=0; y<image_height; y++)
- {
- for (int x=0; x<image_width; x++)
- {
- if (left_image.at<float>(y,x) == 0 || right_image.at<float>(y,x) == 0)
- {
- continue;
- }
- float disparity = abs(x - (x - baseline*focal_length/right_image.at<float>(y,x)));
- float depth = (baseline * focal_length) / disparity;
- depth_map.at<float>(y,x) = (depth <= depth_range) ? depth : 0;
- }
- }
- return depth_map;
- }
- int main()
- {
- // 生成Gray码
- vector<string> gray_codes = generate_gray_codes(gray_code_length);
- // 生成光栅图案
- vector<Mat> patterns = generate_line_patterns(num_lines, line_width, line_spacing);
- // 生成投影点坐标
- Mat projector_points = generate_projection_points(num_lines, image_width, image_height);
- // 计算摄像机坐标系中的坐标
- Mat camera_points = calculate_camera_coordinates(projector_points, baseline, focal_length);
- // 投影并采集图像
- Mat left_image = project_and_capture_image(patterns, gray_codes, camera_points.reshape(3, image_height, image_width), z_near, z_far);
- Mat right_image = project_and_capture_image(patterns, gray_codes, camera_points.reshape(3, image_height, image_width) + Vec3f(baseline, 0, 0), z_near, z_far);
- // 计算深度图
- Mat depth_map = calculate_depth_map(left_image, right_image, baseline, focal_length);
- // 显示深度图
- imshow("Depth Map", depth_map / z_far * 255);
- waitKey(0);
- return 0;
- }
复制代码
3. Matlab代码示例
```matlab
% 定义相机参数
image_width =
--- 光学专家Gpt |