所谓光学薄膜是指其厚度能够光的波长相比拟,其次要能对透过其上的光产生作用。具体在于其上下表面对光的反射与透射的作用。 光学薄膜的定义: 涉及光在传播路径过程中,附著在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或是光的偏振分离等各特殊形态的光。 光学薄膜的特点是: 表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。不同物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 光学薄膜的传统应用 光学薄膜按应用分为反射膜、增透膜、滤光膜、光学保护膜、偏振膜、分光膜和位相膜。减反射膜,是应用最广泛的光学薄膜,它可以减少光学表面的反射率而提高其透射率。对于单一波长,理论上的反射率可以降到零,透射率为100%;对于可见光谱段,反射率可以降低到0.5%,甚至更低,以保证一个由多个镜片组成的复杂系统有足够的透射率和极低的杂散光。现代光学装置没有一个是不经过减反射处理的。由于其具有极低的反射率和鲜艳的表面颜色,现代人们日常生活中的眼镜普遍都镀有减反射膜
高反射膜 能将绝大多数入射光能量反射回去。当选用介质膜堆时,由于薄膜的损耗极低,随着膜层数的不断增加,其反射率可以不断地增加(趋近于100%)。这种高反射膜在激光器的制造和激光应用中都是必不可少的。 能量分光膜 可将入射光能量的一部分透射,另一部分反射分成两束光,据涂布在线了解,最常用的是T:R=50:50的分光膜。 光谱分光膜 可将入射光中一部分光谱的能量透射,另一部分光谱的能量反射,将长波能量反射、短波能量透射的叫做短波通截止滤光膜;将长波能量透射、短波能量反射的叫长波通截止滤光膜。利用它们可以把一束光分成不同的颜色。 带通滤光片 只允许一个谱段(可能比较宽,也可以相当窄)的光透过,它是光波的帯通滤波器。窄帯通滤波器在光学仪器中具有获得单色光和抑制系统光学背景的作用,在光学、医学、刑侦、通讯、生化等领域有广泛应用。超窄带滤光片在光通信中成功地应用于制造密集型的波分复用器(DWDM),从而推动了光通信的发展。宽带通滤光膜最近最成功的应用是用于制造低辐射玻璃,可以用于发展一种反射能量而又可透过太阳光的建筑窗口玻璃。涂布在线认为,这在能源费用不断上涨的今天,必将发展成一个大的产业 。
新型光学薄膜的典型应用 现代科学技术特别是激光技术和信息光学的发展,光学薄膜不仅用于纯光学器件,在光电器件、光通信器件上也得到广泛的应用。近代信息光学、光电子技术及光子技术的发展,对光学薄膜产品的长寿命、高可靠性及高强度的要求越来越高,从而发展了一系列新型光学薄膜及其制备技术,并为解决光学薄膜产业化面临的问题提供了全面的解决方案。包括高强度激光器、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜等。 照明领域的冷光膜 照明领域现在使用非常广泛的是石英卤素灯, 它具有体积小、发光效率高、光衰小、寿命长、显色指数高的优点,特别是采用光学薄膜技术制成的“定向冷反射卤钨灯”,由于其光源发出的红外光被透射,而可见光被定向反射的优势, 得到了越来越广泛的应用,无论是工业照明(放映灯、投影灯、医用灯、背投影电视光源等),商业照明(商场、饭店、珠宝、服装等),还是家庭照明(装饰装潢),市场前景光明。 其中的核心技术就是在冷反射杯的镀膜技术得到了空前的成功应用,使得镀有反射可见、透射红外的冷光杯具有明显的先进性,用仅有国际价格十分之一的国产改装设备,采用具有中国特色的镀膜技术和工艺,使得冷光杯具有极大的优势,性价比居世界前列,世界上几乎所有照明巨头的冷光(灯)都从中国采购,中国的年出口量在3亿元以上。 冷光膜的原理和研究 冷光膜的设计原理是要求能够尽可能高的反射可见光,而透射红外光,镀在弧形反光碗上,使反射的光亮很高,而红外幅射热则大大减少,从而降低了光束的温度。用这种技术制作的照明射灯就称为冷光灯。冷光膜实际上是一种长波通的宽带反射膜,要有一定的可见区反射带宽和长波良好的通带,可用高反射膜与光谱分光膜的设计原理作为解决方案。为了得到在可见区较宽的反射带, 可用两个方法解决: 1:设计不同中心波长的高反射膜系, 并把它们的高反射带连起来, 以得到宽的高反射带。 2:设计膜层厚度按几何级数或按算术级数递变的膜系,其设计的目的是构成一个中心波长不断变化的膜系,以得到宽带高反射膜。 为了得到红外区高的透射率,可采用合适的红外透明膜料以及通带匹配层技术来达到。需要指出的是,反射带的宽度的定位,对于冷光灯的综合光谱、色温、照度、光通量都有重要影响,必须根据需要进行特别设计和控制。 冷光膜的分类 镀制冷光膜的反光碗由于选择的镀膜材料不同,其特性及应用范围也不同。 软膜 镀膜材料为ZnS-MgF2组合。其特点为制作方便,工艺成熟;缺点牢固度、耐水性、耐温性、持久性较差,如使用离子辅助镀膜技术可改善其特性。常用于使用要求较低的场合,应用于使用寿命1000h 以下的冷光射灯。 半硬膜 镀膜材料为ZnS-SiO 组合。这对材料的组合非常有价值,有些文献报道一氧化硅和硫化锌由于应力不匹配,容易膜裂,故不宜作为高低折射率材料搭配。而现在的研究证明,由于采取必要而独特的工艺制备技术,所以此类膜层非常牢固,耐水性、耐温性也很理想,其膜层可经受沸水蒸煮,由此膜料制作在冷光射灯,使用寿命在2000h 以上。它已作为冷光膜的优选膜料,同理也可重点推荐用于其它镀膜制品。 硬膜 镀膜材料为T iO2-SiO2 组合。此组合的膜层各项性能指标良好,可用于使用条件很苛刻的冷光膜产品,如电影放映机反光碗,使用寿命4000h 等级的冷光射灯领域,缺点是对设备的要求高,制作工艺复杂,制作成本较高。 光学薄膜的制备技术 光学薄膜的制备技术是把薄膜材料按照一定的技术途径和特定的要求沉积为薄膜。光学薄膜可以采用物理气相学沉积(PVD)、化学气相沉积(CVD)和化学液相沉积(CLD)3种技术来制备,物理气相学沉积(PVD)制备光学薄膜这一技术目前已被广泛采用,从而使各种光学薄膜在各个领域得到广泛的应用,下面涂布在线着重介绍这一制备技术。 4.1物理气相学沉积(PVD) 物理气相沉积是光学薄膜制备的主流技术,物理气相沉积法,简单地说是在真空环境中加热薄膜材料使其成为蒸汽,蒸汽再凝结到温度相对低的基片上形成薄膜。PVC需要使用真空镀膜机,制造成本高,膜层厚度可以精确控制,膜层强度好。PVD制备光学薄膜这一技术目前已被广泛采用,从而使各种光学薄膜在各个领域得到广泛应用。在PVD方法中,根据膜料汽化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术,溅射及离子镀技术用于光学薄膜制备是近几年发展起来的。 4.2化学气相沉积(CVD) 化学气相沉积(CVD)一般需要较高的沉积温度,而且在薄膜制备前需要特定的先驱反应物,通过原子、分子间化学反应的途径来生成固态薄膜的技术,CVD技术制备薄膜的沉积速率一般较高。但在薄膜制备过程中也会产生可燃、有毒等一些副产物。 4.3化学液相沉积(CLD) 化学液相沉积(CLD)工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,还造成废水、废气污染的问题。 光学薄膜的应用前景 光电信息产业中最有发展前景的通讯、显示和存储三大类产品都离不开光学薄膜,如投影机、背投影电视机、数码照相机、摄像机、DVD,以及光通讯中的DWDM、GFF滤光片等,光学薄膜的性能在很大程度上决定了这些产品的最终性能。光学薄膜正在突破传统的范畴,越来越广泛地渗透到从空间探测器、集成电路、生物芯片、激光器件、液晶显示到集成光学等各学科领域中,对科学技术的进步和全球经济的发展都起着重要的作用,研究光学薄膜物理特性及其技术已构成现代科技的一个分支——薄膜光学。光学薄膜技术水平已成为衡量一个国家光电信息等高新技术产业科技发展水平的关键技术之一。 增透减反AR膜,主要也是为了应对国内大的风砂。像尘、砂,都会对增透膜产生划痕方面的影响。这个是增透膜耐湿冷、耐摩擦方面的情况。 总结:光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。不同物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的 |