zhangyifan 发表于 2024-1-2 09:44:24

OptiSystem应用:SOA波长变换器(XGM)

本案例演示了SOA作为使用交叉增益饱和效应(XGM)的波长变换器的应用。

波长为λ1的光信号与需要转换为波长为λ2的连续光信号同时输入SOA,SOA对λ1光功率存在增益饱和特性,结果使得输入光信号所携带信息转换到λ2上,通过滤波器取出λ2光信号,即可实现从λ1到λ2的全光波长转换。输入信号和CW信号可以被双向或反向地发射到SOA中。这里考虑了一种传播方案。

为了实现这一想法,强度调制的输入信号和CW信号被多路复用,然后被发射到SOA中,如图1所示。


图1.光路布局

要演示10 Gb/s的转换,需要以下全局参数(见图2)。


图2.全局参数设置

强度调制的输入信号和CW信号具有1550和1540nm的载波波长和0.316mW和0.158mW的功率(没有线宽、初始相位和极化)。在WDM复用器2×1的帮助下对信号进行复用,输入SOA中。
图3所示为高斯脉冲生成器参数设置:


图3.高斯脉冲生成器参数设置
图4显示了强度调制信号的形状和频谱。:


图4.脉冲形状和频谱


图5显示了多路复用器参数和通道。


a)主要参数



b)通道
图5.WDM复用器设置

图6显示了多路复用后信号的形状。


图6.WDM复用后的波形

图7显示了SOA物理参数。这些放大器参数给出了不饱和单通道增益G0=30dB。


图7.SOA物理参数

图8显示了放大信号。


图8.SOA放大信号

经过多路分解器的放大信号,其特性类似于多路复用器。图9显示了多路分解器后λ=1550 nm处的信号形状和频谱。


图9.1550信道信号形状和频谱

图10显示了多路分解器后λ=1540 nm处的信号形状和频谱。


图10.1540信道信号形状和频谱

可以清楚地看到信号的反转。

页: [1]
查看完整版本: OptiSystem应用:SOA波长变换器(XGM)